| 0 1 . 1 | Convert the hexadecimal numbers 27 and C9 into binary . Then, in binary , add them together to work out the total. Finally, convert the total back into hexadecimal to give the answer. | | | | | | | |---------|---|--|--|--|--|--|--| | | You must show your working. [2 marks] | 0 1.2 | Answer in hexadecimal | | | | | | | | | In decimal , what is the most negative number that can be represented using a 12 | | | | | | | | | two's complement binary integer? [1 mark] | | | | | | | | | | | | | | | | | 0 2 . 1 | The bit pattern below represents an unsigned fixed-point binary number with five bits before and five bits after the binary point. | |---------|---| | | Convert the binary number into decimal. | | | 1 0 0 1 1 0 0 0 1 | | | [2 marks] | | | | | | | | | | | 0 2 . 2 | Explain how the two's complement binary integer 00100111 can be subtracted from the two's complement binary integer 01001001 without converting the numbers into decimal. | | | [2 marks] | | | | | | | | 0 | 3 | | 1 | Figure 2 shows two unsigned binary int | eaers | |---|---|--|---|--|-------| |---|---|--|---|--|-------| Figure 2 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | |---|---|---|---|---|---|---|---| | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | What is the result in binary of multiplying the two numbers shown in Figure 2? | You must snow all your working in binary. | [2 marks | | | |--|----------|--|--| Answer | | | | | 0 3 . 2 | Convert the decimal number 6.34375 into an unsigned fixed point binary number using 8 bits with 5 bits after the binary point. | | | | | | | | | |---------|---|----------|--|--|--|--|--|--|--| | | You may use the space below for working. | [2 marks | Answer | | | | | | | | | | 0 4.1 | Convert the decimal number 177 to unsigned binary using 8 bits. | [1 mark] | |-------|---|----------| | | | | | . 1 | State, in decimal , the lowest and highest values that could be represented in unsigned binary when using 16 bits. | | | | | | | | | | | |-----|---|-------------|----------|---------|--------|-------|----------------|--------|---------|---------------|------| | | anoignoa binar | y Wilon doi | ng 10 | Dito. | | | | | | [2 | mark | | | Lowest | Highest | 2 | Figure 1 and F | igure 2 sh | ow th | e bit p | | | /o un s | signe | d bina | ary integers. | | | | | | | ı | Figu | ire 1 | | | ı | 1 | | | | | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | | | | | | | | | Figu | ıre 2 | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | | | | | | | | | | | | J | | | | Calculate the rebinary multiple | | ltiplyir | ng the | se two | numl | oers to | ogethe | er usin | ng | | | | You must show | | king ir | n binaı | у. | | | | | | | | | | | | | | | | | | [2 | mar | Answer | | | | | | | | | | | | | 7(119WCI | | | | | | | | | | | | 0 6.1 | Shade | e in one lozenge | to indicate which of the following prefixes represents 10 ⁶ [1 mar l | k] | |-------|-------|-------------------------|--|------------| | | A | kibi | 0 | | | | В | mebi | | | | | С | gibi | | | | | D | kilo | | | | | E | mega | | | | | F | giga | 0 | | | 0 6 . 2 | lable 1 shows | s two unsigned | binary | / inte | gers, | Num | ber 1 | and | Num | ber 2. | | |---------|--|------------------|---------|--------|-------|--------|---------|-------|--------|--------|--------------------------------| | | Complete the | table to show t | he res | ult in | binar | y of a | ıdding | the t | two n | umbe | rs. | | | You must con there is one. | nplete the carry | row to | o sho | w the | carr | y from | the | previo | ous co | olumn where | | | | | | 1 | able | 1 | | | | | | | | | Number 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | | | | Number 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | | | Result | | | | | | | | | | | | | Carry | [1 mark] | | 0 6.3 | What is the result of subtracting the two's complement binary number 0010 from the two's complement binary number 00011011? You should give your answer in two's complement binary. | | | | | |)100100 | | | | | | | You must sho | w all your work | king in | binar | y. | | | | | | [2 marks | | | | | | | | | | | | | _ | 0 6.4 | In decimal, wheeler the second | nat are the lowe | | | | /alues | s that | can b | oe rep | oreser | nted by an
[1 mark] | | | Lowest: | | | | | ı | Hiahe | st: | | | | | 0 6 . 5 | What is the decimal equipment is unsigned fixed-point is after the binary point? | | | | | | |---------|--|-----|------|-------|-----|-----------| | | | | Figu | ıre 1 | | | | | | 1 1 | 0 1 | 1 1 | 0 1 | | | | | | | | | [2 marks] | 5.4 Binary number system | PhysicsAndMathsTutor.com | |--------------------------|--------------------------| | | | | 0 7.1 | Convert the bit pattern 10001010 to hexadecimal. | [1 mark] | |-------|--|-----------| | | | | | 0 7.2 | Represent the decimal number 139 as an 8-bit unsigned binary integer. | [1 mark] | | | | | | 0 7.3 | Show how the unsigned binary number 00100011 can be added to the binary number 00101011 without converting the numbers into decimal. | unsigned | | | You must show all your working in binary. | [2 marks] | | | 0 0 1 0 0 0 1 1 + 0 0 1 0 1 0 1 1 | | | | | | | 0 7.4 | Show how the 8-bit two's complement binary integer 00011100 can be subtracted from the 8-bit two's complement binary integer 00111011 with converting the numbers to decimal. | out | |-------|---|----------| | | You must show all your working in binary. | | | | [2 | 2 marks] | 0 7.5 | The bit pattern in Figure 1 represents a 10-bit unsigned fixed point binary r with four bits before and six bits after the binary point. | number | | | Figure 1 | | | | 0 1 1 1 0 1 0 0 | | | | Convert the bit pattern in Figure 1 to decimal. | 2 marks] | | | | | | | | | | | | | | | | |